## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### A new monoclinic polymorph of 3-diethylamino-4-(4-methoxyphenyl)-1,1-dioxo-4*H*-1 $\lambda^6$ ,2-thiazete-4carbonitrile

#### Ahmed M. Orlando,<sup>a</sup> Leonardo Lo Presti<sup>a</sup>\* and Raffaella Soave<sup>b</sup>

<sup>a</sup>Dipartimento di Chimica Fisica ed Elettrochimica, Universitá degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy, and <sup>b</sup>Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133 Milano, Italy Correspondence e-mail: leonardo.lopresti@unimi.it

Received 16 June 2010; accepted 12 July 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.102; data-to-parameter ratio = 10.9.

A new monoclinic form of the title compound,  $C_{14}H_{17}N_3O_3S$ , has been found upon slow crystallization from water. Another monoclinic form of the compound was obtained previously from a mixture of dichloromethane and diethyl ether [Clerici *et al.* (2002). *Tetrahedron*, **58**, 5173–5178]. Both phases crystallize in space group  $P2_1/n$  with one molecule in the asymmetric unit. The formally single exocyclic C–N bond that connects the -NEt<sub>2</sub> unit with the thiazete ring is considerably shorter than the adjacent, formally double, endocyclic C=N bond. This is likely to be due to the extended conjugated system between the electron-donor diethylammine fragment and the electron-withdrawing sulfonyl group. In the newly discovered polymorph, the methoxy group is rotated by almost 180° around the phenyl-OCH<sub>3</sub> bond, resulting in a different molecular conformation.

#### **Related literature**

For the synthesis of the title compound and the crystal structure of the other polymorph, see: Clerici *et al.* (2002). For a related structure, see: Clerici *et al.* (1996). For the biological activity of  $\beta$ -sultam derivatives, see: Barwick *et al.* (2008) and references therein.



#### Experimental

Crystal data  $C_{14}H_{17}N_3O_3S$   $M_r = 307.37$ Monoclinic,  $P2_1/n$  a = 8.3853 (17) Å b = 17.554 (4) Å c = 10.458 (2) Å  $\beta = 95.07$  (3)°

#### Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007)  $T_{\rm min} = 0.855, T_{\rm max} = 0.947$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$  $wR(F^2) = 0.102$ S = 1.012814 reflections Z = 4Mo K\alpha radiation  $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K $0.18 \times 0.16 \times 0.16 \text{ mm}$ 

V = 1533.4 (5) Å<sup>3</sup>

16661 measured reflections 2814 independent reflections 1949 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.043$ 

258 parameters All H-atom parameters refined  $\Delta \rho_{max} = 0.16$  e Å<sup>-3</sup>  $\Delta \rho_{min} = -0.31$  e Å<sup>-3</sup>

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXL97*.

Thanks are due to Professor Riccardo Destro (Università degli Studi di Milano) for thoughtful discussions and to Professor Francesca Clerici (Università degli Studi di Milano) for providing the crystal. Dr Laura Loconte (Università degli Studi di Milano) and Mr Pietro Colombo (Consiglio Nazionale delle Ricerche) are also to be thanked for technical assistance. Financial support by the Italian MIUR (fondi PUR 2008) is also gratefully appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2045).

#### References

Barwick, M., Abu-Izneid, T. & Novak, I. (2008). J. Phys. Chem. 112, 10993–10997.

Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2005). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Clerici, F., Galletti, F., Pocar, D. & Roversi, P. (1996). *Tetrahedron*, **52**, 7183–7199.

Clerici, F., Gelmi, M. L., Soave, R. & Lo Presti, L. (2002). *Tetrahedron*, 58, 5173–5178.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o2032-o2033 [doi:10.1107/S1600536810027558]

# A new monoclinic polymorph of 3-diethylamino-4-(4-methoxyphenyl)-1,1-dioxo-4H-1 $\lambda^6$ ,2-thiazete-4-carbonitrile

#### A. M. Orlando, L. Lo Presti and R. Soave

#### Comment

The title compound, (I), a thiazete 1,1 dioxo derivative containing a four-membered heterocycle, exhibits a marked similarity with the  $\beta$ -sultamic functionality, which is the key component of promising antibiotic drugs (Barwick *et al.*, 2008). A new monoclinic polymorph of (I) (hereinafter, phase B: Fig. 1, Table 1) was found upon slow recrystallization from water of a little amount of the phase A, originally obtained from a CH<sub>2</sub>Cl<sub>2</sub>:Et<sub>2</sub>O mixture (Clerici *et al.*, 2002). Both polymorphs share the same space group,  $P_{21/n}$ , with one molecule in the asymmetric unit. On average, bond lengths and angles are very similar between the two forms, while the molecular conformations are different. The most important dissimilarity resides in the dihedral angles involving the phenyl-OCH<sub>3</sub> single bond, which is rotated by ~180° in the form B with respect to form A (Fig. 2). In both crystal forms the formally single exocyclic C9–N1 bond connecting the –NEt<sub>2</sub> moiety to the thiazete ring is considerably shorter (phase B: 1.307 (3) Å; phase A: 1.318 (3) Å) than the adjacent, formally double, endocyclic C9=N2 bond (phase B: 1.331 (3) Å; phase A: 1.327 (3) Å). A possible explanation resides in the existence of an extended  $\pi$  conjugated system between the electron-donor diethylammine fragment and the electron-withdrawing sulfonyl group. This conjecture is supported by the values of the C–N1–C angles, which in both phases range from ~118° to ~122° and are compatible with a formally *sp*<sup>2</sup> tertiary nitrogen atom. Very similar bond distances within the thiazete group have been reported by Clerici *et al.* (1996) for a chemically related derivative of (I). On geometrical grounds, no relevant intermolecular hydrogen bonds have been found in both phases.

#### **Experimental**

The compound (I) was synthesized using the procedure reported by Clerici *et al.* (2002). Part of the material obtained from dichloromethane and diethyl ether (phase A) was dissolved in distilled water and crystallized by slow solvent evaporation at room temperature. After roughly 7 days, very small colorless crystals with the same habit (prism) as the most common phase A appeared. Only the X-ray analysis revealed that in fact a new polymorph (phase B) was obtained.

#### Refinement

All hydrogen atoms have been located by difference Fourier. Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); absorption correction: *SADABS* (Bruker, 2007); program used to solve structure: *SHELXS97* (Sheldrick, 2008); program used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphic: *DIAMOND* (Brandenburg, 2010); overlay scheme: Mercury CSD 2.3

Figures





Fig. 1. Molecular structure of (I), with the non-H atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Least-squares overlay scheme of the asymmetric units of (I) within phase B (this work, carbon backbone in gray) and phase A (Clerici *et al.*, 2002; carbon backbone in green). Hydrogen atoms omitted for clarity.

### 3-diethylamino-4-(4-methoxyphenyl)-1,1-dioxo-4H-1 $\lambda^6$ ,2-thiazete- 4-carbonitrile

F(000) = 648

 $\theta = 2.3 - 21.6^{\circ}$ 

 $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K

Prism, colourless

 $0.18 \times 0.16 \times 0.16 \text{ mm}$ 

 $D_{\rm x} = 1.331 {\rm Mg m}^{-3}$ 

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2885 reflections

Crystal data

C<sub>14</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>S  $M_r = 307.37$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 8.3853 (17) Å b = 17.554 (4) Å c = 10.458 (2) Å  $\beta = 95.07$  (3)° V = 1533.4 (5) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker APEX CCD area-detector diffractometer                         | 2814 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 1949 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.043$                                                     |
| ω scans                                                              | $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2007) | $h = -10 \rightarrow 10$                                                  |
| $T_{\min} = 0.855, T_{\max} = 0.947$                                 | $k = -21 \rightarrow 21$                                                  |
| 16661 measured reflections                                           | $l = -12 \rightarrow 12$                                                  |

#### Refinement

| Refinement on $F^2$        | Primary atom site location: structure-invariant direct methods   |
|----------------------------|------------------------------------------------------------------|
| Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |

| $R[F^2 > 2\sigma(F^2)] = 0.037$ | Hydrogen site location: difference Fourier map                                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| $wR(F^2) = 0.102$               | All H-atom parameters refined                                                                       |
| <i>S</i> = 1.01                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0446P)^{2} + 0.4078P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 2814 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                 |
| 258 parameters                  | $\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$                                               |
| 0 restraints                    | $\Delta \rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$                                                |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У             | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|---------------|---------------|---------------------------|
| S1  | 0.46791 (6)  | 0.19850 (4)   | 0.39836 (6)   | 0.0569 (2)                |
| 01  | 0.1824 (2)   | 0.00687 (9)   | -0.10877 (14) | 0.0636 (5)                |
| O2  | 0.57694 (19) | 0.19314 (11)  | 0.51054 (16)  | 0.0758 (5)                |
| O3  | 0.53410 (19) | 0.20903 (10)  | 0.27881 (16)  | 0.0724 (5)                |
| N1  | 0.0608 (2)   | 0.20205 (10)  | 0.44220 (16)  | 0.0472 (4)                |
| N2  | 0.3156 (2)   | 0.25469 (11)  | 0.41859 (19)  | 0.0611 (5)                |
| N3  | 0.3384 (3)   | 0.02616 (14)  | 0.5764 (2)    | 0.0739 (6)                |
| C1  | 0.2489 (4)   | -0.06433 (17) | -0.1428 (3)   | 0.0698 (8)                |
| C2  | 0.2106 (2)   | 0.03021 (12)  | 0.01541 (19)  | 0.0458 (5)                |
| C3  | 0.2867 (3)   | -0.01266 (14) | 0.1123 (2)    | 0.0521 (6)                |
| C4  | 0.3129 (3)   | 0.01743 (13)  | 0.2346 (2)    | 0.0491 (5)                |
| C5  | 0.1573 (3)   | 0.10253 (13)  | 0.0415 (2)    | 0.0497 (5)                |
| C6  | 0.1842 (3)   | 0.13239 (13)  | 0.1623 (2)    | 0.0474 (5)                |
| C7  | 0.2636 (2)   | 0.09019 (11)  | 0.26096 (18)  | 0.0395 (5)                |
| C8  | 0.3043 (2)   | 0.12520 (12)  | 0.39177 (19)  | 0.0425 (5)                |
| C9  | 0.2122 (2)   | 0.19738 (12)  | 0.42216 (19)  | 0.0448 (5)                |
| C10 | 0.3242 (2)   | 0.06955 (14)  | 0.4954 (2)    | 0.0496 (5)                |
| C11 | -0.0148 (3)  | 0.27758 (15)  | 0.4525 (3)    | 0.0599 (7)                |
| C12 | -0.0724 (4)  | 0.3089 (2)    | 0.3236 (3)    | 0.0769 (8)                |
| C13 | -0.0377 (3)  | 0.13436 (15)  | 0.4614 (2)    | 0.0553 (6)                |
| C14 | -0.0494 (4)  | 0.1173 (2)    | 0.6015 (3)    | 0.0780 (9)                |
| H1A | 0.226 (3)    | -0.0650 (17)  | -0.234 (3)    | 0.105 (10)*               |
| H1B | 0.201 (3)    | -0.1077 (16)  | -0.096 (3)    | 0.085 (9)*                |
| H1C | 0.364 (3)    | -0.0633 (15)  | -0.122 (2)    | 0.081 (9)*                |
|     |              |               |               |                           |

## supplementary materials

| H3   | 0.317 (3)  | -0.0621 (14) | 0.100 (2)   | 0.066 (7)*  |
|------|------------|--------------|-------------|-------------|
| H4   | 0.367 (2)  | -0.0118 (12) | 0.299 (2)   | 0.055 (6)*  |
| Н5   | 0.100(2)   | 0.1321 (12)  | -0.027 (2)  | 0.055 (6)*  |
| H6   | 0.153 (3)  | 0.1815 (13)  | 0.176 (2)   | 0.056 (7)*  |
| H11A | -0.101 (3) | 0.2705 (13)  | 0.502 (2)   | 0.068 (7)*  |
| H11B | 0.064 (3)  | 0.3094 (15)  | 0.495 (2)   | 0.078 (9)*  |
| H12A | -0.122 (3) | 0.3602 (18)  | 0.334 (3)   | 0.095 (9)*  |
| H12B | -0.152 (4) | 0.2716 (19)  | 0.279 (3)   | 0.114 (12)* |
| H12C | 0.016 (4)  | 0.3143 (15)  | 0.271 (3)   | 0.088 (9)*  |
| H13A | -0.139 (3) | 0.1458 (12)  | 0.4177 (19) | 0.053 (6)*  |
| H13B | 0.008 (2)  | 0.0906 (13)  | 0.4177 (19) | 0.052 (6)*  |
| H14A | -0.113 (4) | 0.073 (2)    | 0.613 (3)   | 0.126 (12)* |
| H14B | -0.094 (3) | 0.1583 (18)  | 0.642 (3)   | 0.095 (10)* |
| H14C | 0.062 (4)  | 0.1065 (18)  | 0.653 (3)   | 0.116 (12)* |
|      |            |              |             |             |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|                | $U^{11}$       | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----------------|----------------|-------------|-------------|--------------|--------------|--------------|
| <b>S</b> 1     | 0.0428 (3)     | 0.0691 (4)  | 0.0599 (4)  | -0.0149 (3)  | 0.0108 (3)   | -0.0137 (3)  |
| 01             | 0.0840 (12)    | 0.0642 (11) | 0.0414 (9)  | 0.0047 (9)   | -0.0024 (8)  | -0.0079 (8)  |
| 02             | 0.0492 (9)     | 0.1081 (15) | 0.0690 (11) | -0.0171 (9)  | -0.0014 (8)  | -0.0233 (10) |
| 03             | 0.0624 (10)    | 0.0883 (13) | 0.0705 (11) | -0.0220 (9)  | 0.0270 (9)   | -0.0068 (10) |
| N1             | 0.0434 (10)    | 0.0506 (11) | 0.0489 (10) | -0.0011 (8)  | 0.0116 (8)   | -0.0073 (8)  |
| N2             | 0.0559 (12)    | 0.0537 (12) | 0.0755 (14) | -0.0126 (9)  | 0.0162 (10)  | -0.0154 (10) |
| N3             | 0.0798 (15)    | 0.0884 (17) | 0.0534 (13) | 0.0113 (13)  | 0.0047 (11)  | 0.0129 (12)  |
| C1             | 0.092 (2)      | 0.0672 (19) | 0.0505 (17) | -0.0020 (17) | 0.0059 (15)  | -0.0149 (14) |
| C2             | 0.0466 (12)    | 0.0514 (13) | 0.0392 (12) | -0.0049 (10) | 0.0033 (9)   | -0.0013 (10) |
| C3             | 0.0619 (14)    | 0.0448 (14) | 0.0492 (13) | 0.0077 (11)  | 0.0032 (10)  | -0.0051 (11) |
| C4             | 0.0510 (13)    | 0.0524 (14) | 0.0428 (13) | 0.0089 (11)  | -0.0011 (10) | 0.0024 (11)  |
| C5             | 0.0563 (13)    | 0.0506 (14) | 0.0417 (12) | 0.0046 (11)  | 0.0010 (10)  | 0.0066 (11)  |
| C6             | 0.0517 (13)    | 0.0415 (13) | 0.0495 (14) | 0.0046 (10)  | 0.0072 (10)  | 0.0021 (11)  |
| C7             | 0.0355 (10)    | 0.0430 (12) | 0.0405 (11) | -0.0034 (9)  | 0.0066 (8)   | -0.0013 (9)  |
| C8             | 0.0371 (11)    | 0.0492 (13) | 0.0415 (12) | -0.0022 (9)  | 0.0054 (9)   | -0.0042 (10) |
| С9             | 0.0437 (11)    | 0.0491 (13) | 0.0422 (12) | -0.0050 (10) | 0.0064 (9)   | -0.0074 (10) |
| C10            | 0.0447 (12)    | 0.0619 (15) | 0.0421 (13) | 0.0007 (11)  | 0.0040 (10)  | -0.0062 (12) |
| C11            | 0.0602 (16)    | 0.0581 (16) | 0.0635 (17) | 0.0092 (13)  | 0.0169 (13)  | -0.0099 (13) |
| C12            | 0.083 (2)      | 0.073 (2)   | 0.077 (2)   | 0.0205 (18)  | 0.0162 (17)  | 0.0058 (17)  |
| C13            | 0.0408 (13)    | 0.0619 (16) | 0.0640 (16) | -0.0094 (11) | 0.0095 (11)  | -0.0148 (13) |
| C14            | 0.085 (2)      | 0.078 (2)   | 0.077 (2)   | -0.0188 (19) | 0.0353 (18)  | -0.0019 (17) |
|                |                |             |             |              |              |              |
| Geometric para | umeters (Å, °) |             |             |              |              |              |

| S1—O3 | 1.4241 (17) | C5—C6  | 1.369 (3) |
|-------|-------------|--------|-----------|
| S1—O2 | 1.4252 (18) | С5—Н5  | 0.98 (2)  |
| S1—N2 | 1.642 (2)   | C6—C7  | 1.391 (3) |
| S1—C8 | 1.878 (2)   | С6—Н6  | 0.92 (2)  |
| O1—C2 | 1.362 (2)   | С7—С8  | 1.511 (3) |
| O1—C1 | 1.426 (3)   | C8—C10 | 1.457 (3) |
| N1—C9 | 1.307 (3)   | C8—C9  | 1.532 (3) |

| N1 C12                   | 1 471 (2)              | C11 C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 406 (4)                |
|--------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| NI-C13                   | 1.4/1(3)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.490 (4)                |
|                          | 1.4/8 (3)              | CII—HIIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.94 (2)                 |
| N2                       | 1.331 (3)              | CII—HIIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95 (3)                 |
| N3—C10                   | 1.138 (3)              | С12—Н12А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00 (3)                 |
| C1—H1A                   | 0.96 (3)               | C12—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.02 (3)                 |
| C1—H1B                   | 1.01 (3)               | C12—H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97 (3)                 |
| C1—H1C                   | 0.97 (3)               | C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.508 (4)                |
| C2—C3                    | 1.373 (3)              | C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95 (2)                 |
| C2—C5                    | 1.381 (3)              | C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99 (2)                 |
| C3—C4                    | 1.384 (3)              | C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95 (4)                 |
| С3—Н3                    | 0.92 (2)               | C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.93 (3)                 |
| C4—C7                    | 1.377 (3)              | C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06 (3)                 |
| C4—H4                    | 0.94 (2)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| O3—S1—O2                 | 117.38 (11)            | C10—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113.72 (18)              |
| O3—S1—N2                 | 113.77 (11)            | C10—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115.25 (17)              |
| 02 - 81 - N2             | 112.54 (11)            | C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 116.52 (17)              |
| 03 - 81 - 68             | 113 38 (10)            | C10-C8-S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113 39 (14)              |
| 02 - 51 - 63             | 113.50 (10)            | C7 - C8 - S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114 70 (13)              |
| N2-S1-C8                 | 80.92 (9)              | C9 - C8 - S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78 81 (12)               |
| $C_2 = 01 = C_1$         | 1175(2)                | N1 C9 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1270(2)                  |
| $C_2 = 01 = C_1$         | 117.5(2)<br>122.42(10) | $N1 = C_2 = N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.0(2)<br>126.97(19)   |
| $C_{2} = N_{1} = C_{12}$ | 122.43(19)             | N2 C0 C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.07(10)<br>106.11(17) |
| $C_{2} = N_{1} = C_{11}$ | 119.8 (2)              | $N_2 = C_9 = C_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.11(17)<br>170.4(2)   |
| C13-N1-C11               | 117.72 (19)            | N3-C10-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/9.4 (2)                |
| C9—N2—S1                 | 93.//(15)              | NI—CII—CI2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.7 (2)                |
| O1—C1—H1A                | 102.2 (18)             | N1—C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106.2 (15)               |
| O1—C1—H1B                | 111.1 (15)             | C12—C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.1 (15)               |
| H1A—C1—H1B               | 115 (2)                | N1—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106.1 (16)               |
| 01—C1—H1C                | 109.3 (16)             | C12—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111.2 (16)               |
| H1A—C1—H1C               | 109 (2)                | H11A—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 (2)                  |
| H1B—C1—H1C               | 110 (2)                | C11-C12-H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.8 (16)               |
| O1—C2—C3                 | 124.6 (2)              | C11—C12—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.9 (18)               |
| O1—C2—C5                 | 115.63 (19)            | H12A—C12—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 (2)                  |
| C3—C2—C5                 | 119.7 (2)              | C11—C12—H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.2 (17)               |
| C2—C3—C4                 | 119.9 (2)              | H12A—C12—H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109 (2)                  |
| С2—С3—Н3                 | 122.2 (15)             | H12B—C12—H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108 (2)                  |
| С4—С3—Н3                 | 117.9 (15)             | N1—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.2 (2)                |
| C7—C4—C3                 | 120.9 (2)              | N1—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104.7 (13)               |
| C7—C4—H4                 | 120.0 (13)             | C14—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112.1 (13)               |
| C3—C4—H4                 | 1191(13)               | N1-C13-H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.5(12)                |
| C6—C5—C2                 | 120 3 (2)              | C14—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.8 (12)               |
| C6_C5_H5                 | 120.5(2)<br>120.4(12)  | H13A_C13_H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.2(17)                |
| $C_{2}$ $C_{5}$ $H_{5}$  | 110.3(12)              | C13 - C14 - H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.2(17)                |
| $C_2 - C_3 - H_3$        | 119.5(12)<br>120.7(2)  | C13 - C14 - H14R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111(2)<br>110.7(10)      |
|                          | 120.7(2)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.7(19)                |
|                          | 110.4 (14)             | $\Pi_{14} = \Pi_{14} = \Pi$ | 109 (3)                  |
|                          | 120.8 (14)             | U13-U14-H14U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113.0 (17)               |
| U4 - U' - Ub             | 118.55 (19)            | H14A—C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106 (3)                  |
| C4—C7—C8                 | 120.69 (18)            | H14B—C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106 (3)                  |
| C6—C7—C8                 | 120.64 (19)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |

## supplementary materials

| O3—S1—N2—C9  | 116.10 (15)  | N2—S1—C8—C10   | -116.78 (16) |
|--------------|--------------|----------------|--------------|
| O2—S1—N2—C9  | -107.28 (15) | O3—S1—C8—C7    | -1.80 (19)   |
| C8—S1—N2—C9  | 4.46 (13)    | O2—S1—C8—C7    | -139.02 (15) |
| C1—O1—C2—C3  | -5.7 (3)     | N2—S1—C8—C7    | 110.27 (16)  |
| C1—O1—C2—C5  | 174.0 (2)    | O3—S1—C8—C9    | -116.00 (13) |
| O1—C2—C3—C4  | 178.3 (2)    | O2—S1—C8—C9    | 106.78 (13)  |
| C5—C2—C3—C4  | -1.5 (3)     | N2—S1—C8—C9    | -3.94 (12)   |
| C2—C3—C4—C7  | -0.1 (3)     | C13—N1—C9—N2   | -171.6 (2)   |
| O1—C2—C5—C6  | -177.87 (19) | C11—N1—C9—N2   | 5.4 (3)      |
| C3—C2—C5—C6  | 1.9 (3)      | C13—N1—C9—C8   | 11.5 (3)     |
| C2—C5—C6—C7  | -0.8 (3)     | C11—N1—C9—C8   | -171.5 (2)   |
| C3—C4—C7—C6  | 1.2 (3)      | S1—N2—C9—N1    | 176.98 (19)  |
| C3—C4—C7—C8  | -174.95 (19) | S1—N2—C9—C8    | -5.62 (17)   |
| C5—C6—C7—C4  | -0.7 (3)     | C10-C8-C9-N1   | -66.9 (3)    |
| C5—C6—C7—C8  | 175.38 (19)  | C7—C8—C9—N1    | 70.2 (3)     |
| C4—C7—C8—C10 | -28.1 (3)    | S1—C8—C9—N1    | -177.6 (2)   |
| C6—C7—C8—C10 | 155.89 (18)  | C10-C8-C9-N2   | 115.7 (2)    |
| C4—C7—C8—C9  | -165.80 (18) | C7—C8—C9—N2    | -107.2 (2)   |
| C6—C7—C8—C9  | 18.2 (3)     | S1—C8—C9—N2    | 5.00 (15)    |
| C4—C7—C8—S1  | 104.7 (2)    | C9—N1—C11—C12  | 85.4 (3)     |
| C6—C7—C8—S1  | -71.3 (2)    | C13—N1—C11—C12 | -97.4 (3)    |
| O3—S1—C8—C10 | 131.15 (16)  | C9—N1—C13—C14  | 96.4 (3)     |
| O2—S1—C8—C10 | -6.06 (19)   | C11—N1—C13—C14 | -80.6 (3)    |





Fig. 2

